An EBMC-Based Approach to Selecting Types for Entity Filtering

نویسندگان

  • Jiwei Ding
  • Wentao Ding
  • Wei Hu
  • Yuzhong Qu
چکیده

The quantity of entities in the Linked Data is increasing rapidly. For entity search and browsing systems, filtering is very useful for users to find entities that they are interested in. Type is a kind of widely-used facet and can be easily obtained from knowledge bases, which enables to create filters by selecting at most K types of an entity collection. However, existing approaches often fail to select high-quality type filters due to complex overlap between types. In this paper, we propose a novel type selection approach based upon Budgeted Maximum Coverage (BMC), which can achieve integral optimization for the coverage quality of type filters. Furthermore, we define a new optimization problem called Extended Budgeted Maximum Coverage (EBMC) and propose an EBMC-based approach, which enhances the BMC-based approach by incorporating the relevance between entities and types, so as to create sensible type filters. Our experimental results show that the EBMCbased approach performs best comparing with several representative approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

An Optimal Approach to Local and Global Text Coherence Evaluation Combining Entity-based, Graph-based and Entropy-based Approaches

Text coherence evaluation becomes a vital and lovely task in Natural Language Processing subfields, such as text summarization, question answering, text generation and machine translation. Existing methods like entity-based and graph-based models are engaging with nouns and noun phrases change role in sequential sentences within short part of a text. They even have limitations in global coheren...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model

The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015